图2:(A)人流网络揭示了是重要节点(黄色)和有效边界(红色)的城市。(转载自参考文献20,CC BY 4.0)。(B)国际金融机构网络。边缘象征着相互持股。来自参考文献21,经AAAS许可转载。请注意,节点之间的高连接性可能导致系统性风险和网络漏洞。(C)性伙伴出现的分布对网络连接的影响。(改编自参考文献22,McGraw Hill LLC)。请注意,并发伙伴的平均数量略有增加(从左上方到右方的直方图)会对网络最大部分中的节点数量产生重大影响。(D)大脑区域网络,在此边缘代表着流线密度的发育增长。(转载自参考文献23,CC BY 4.0)。
这四个中心性度量都有不同的学科起源。度中心性的观点始于社会学家和哲学家Georg Simmel[28]。特征向量中心性是图论的概念,数学家 Edmund Landau 于1895年在关于象棋比赛的论文中首次使用它[29]。扩散中心性在经济学家研究信息传播速度的论文中被广泛使用[30]。介数中心性来源来自社会学文献,这些文献分析了社会资本的产生和维持[31]。换句话说,从一开始,这些社会传染模型的建立本身就是一个跨学科的事业。
损失厌恶会导致“现状偏差”,一个夸张的趋势是选择建议的违约或坚持现状偏差。这种观点影响了公共政策。在默认要器官捐赠的国家,人们必须“选择退出”的捐赠率要高于选择性捐赠的国家的捐赠率[71]。违约偏好的第一个有影响力的应用是“明天储蓄更多”(Save More Tomorrow SMART)计划。在这个计划中公司将工人自动注册到税收优惠的401(k)计划中(除非他们选择退出),并且公司将他们下一次加薪的一小部分投入到这个计划中(这样他们的薪水不会下降并造成主观损失)。这些计划大大节省了开支(73)。SMART计划成为了许多“轻推”类型的代言人,其设计选择可以帮助某些人以较低的成本做出更好的决定,而其他人则可以自己选择罚款[74,75]
1 M. J. Salganik, Bit by Bit: Social Research in the Digital Age (Princeton University Press, 2018).2 S. E. Page, The Diversity Bonus: How Great Teams Pay off in the Knowledge Economy (Princeton University Press, 2017).3 P. Smaldino, C. O’Connor, Interdisciplinarity can aid the spread of better methods between scientific communities. https://osf.io/cm5v3, doi:10.31222/osf.io/ cm5v3. Accessed 10 November 2020.4 R. Costanza et al., The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).5 National Science Board, Report to Congress on interdisciplinary research at the National Science Foundation. https://www.nsf.gov/nsb/publications/2018/ nsb201915.pdf. Accessed 1 July 2020.6 National Academy of Sciences, National Academy of Engineering, and Institute of Medicine, Facilitating Interdisciplinary Research (National Academies Press, 2005), vol. 11153.7 National Science Foundation, National Science Foundation’s merit review process fiscal year 2018 digest. https://www.nsf.gov/nsb/publications/2020/ nsb202013.pdf. Accessed 1 July 2020.8 T. D. Cook, D. T. Campbell, Quasi-Experimentation: Design & Analysis Issues for Field Settings (Houghton Mifflin, 1979).9 J. D. Angrist, A. B. Krueger, Instrumental variables and the search for identification: From supply and demand to natural experiments. J. Econ. Perspect. 15, 69–85 (2001).10 A. J. Sovey, D. P. Green, Instrumental variables estimation in political science: A readers’ guide. Am. J. Pol. Sci. 55, 188–200 (2011).11 J. Pearl, Causal diagrams for empirical research. Biometrika 82, 669–688 (1995).12 D. J. Watts, Should social science be more solution-oriented? Nat. Hum. Behav. 1, 0015 (2017). 13 D. J. Watts, P. S. Dodds, Influentials, networks, and public opinion formation. J. Consum. Res. 34, 441–458 (2007).14 L. C. Freeman, The Development of Social Network Analysis: A Study in the Sociology of Science (Empirical Press, 2004).15 S. Aral, C. Nicolaides, Exercise contagion in a global social network. Nat. Commun. 8, 14753 (2017).16 D. J. Watts, S. H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).17 N. A. Christakis, J. H. Fowler, Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives (Little, Brown, 2011).18 M. O. Jackson, The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviors (Pantheon Books, 2019).19 D. J. Watts, The “new” science of networks. Annu. Rev. Sociol. 30, 243–270 (2004).20 C. Thiemann, F. Theis, D. Grady, R. Brune, D. Brockmann, The structure of borders in a small world. PLoS One 5, e15422 (2010).21 F. Schweitzer et al., Economic networks: The new challenges. Science 325, 422–425 (2009).22 M. Morris, S. Goodreau, J. Moody, “Sexual networks, concurrency, and STD/HIV” in Sexually Transmitted Diseases, K. K. Holmes, Ed. (McGraw-Hill Medical,2008), pp. 109–125.23 S. T. E. Baker et al., Developmental changes in brain network hub connectivity in late adolescence. J. Neurosci. 35, 9078–9087 (2015).24 P. J. Richerson, R. Boyd, The role of evolved predispositions in cultural evolution. Ethol. Sociobiol. 10, 195–219 (1989).25 R. S. Burt, D. Ronchi, Teaching executives to see social capital: Results from a field experiment. Soc. Sci. Res. 36, 1156–1183 (2007).26 S. A. Morelli, D. C. Ong, R. Makati, M. O. Jackson, J. Zaki, Empathy and well-being correlate with centrality in different social networks. Proc. Natl. Acad. Sci.U.S.A. 114, 9843–9847 (2017).27 M. E. Weaverdyck, C. Parkinson, The neural representation of social networks. Curr. Opin. Psychol. 24, 58–66 (2018).28 G. Simmel, O. Rammstedt, G. Simmel, Soziologie: Untersuchungen über die Formen der Vergesellschaftung (Suhrkamp, 1992).29 I. J. Schoenberg, “Publications of Edmund Landau” in Number Theory and Analysis, P. Tura ́ n, Ed. (Springer, 1969), pp. 335–355.30 M. O. Jackson, Social and Economic Networks (Princeton University Press, 2008).31 L. C. Freeman, A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977).32 M. Muthukrishna, M. Schaller, Are collectivistic cultures more prone to rapid transformation? Computational models of cross-cultural differences, social networkstructure, dynamic social influence, and cultural change. Pers. Soc. Psychol. Rev. 24, 103–120 (2019).33 N. Candelo, C. Eckel, C. Johnson, Social distance matters in dictator games: Evidence from 11 Mexican villages. Games (Basel) 9, 77 (2018).34 S. Currarini, M. O. Jackson, P. Pin, Identifying the roles of race-based choice and chance in high school friendship network formation. Proc. Natl. Acad. Sci. U.S.A.107, 4857–4861 (2010).35 G. F. Davis, H. R. Greve, Corporate elite networks and governance changes in the 1980s. Am. J. Sociol. 103, 1–37 (1997).36 W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927).37 M. Kretzschmar, M. Morris, Measures of concurrency in networks and the spread of infectious disease. Math. Biosci. 133, 165–195 (1996).38 M. Morris, M. Kretzschmar, Concurrent partnerships and the spread of HIV. AIDS 11, 641–648 (1997).39 J. S. Jia et al., Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 582, 389–394 (2020).40 A. L. Bertozzi, E. Franco, G. Mohler, M. B. Short, D. Sledge, The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. U.S.A.117, 16732–16738 (2020).41 M. O. Jackson, A. Wolinsky, A strategic model of social and economic networks. J. Econ. Theory 71, 44–74 (1996).42 J. Angrist, P. Azoulay, G. Ellison, R. Hill, S. F. Lu, Inside job or deep impact? Extramural citations and the influence of economic scholarship. J. Econ. Lit. 58, 3–52(2020).43 R. H. Thaler, From cashews to nudges: The evolution of behavioral economics. Am. Econ. Rev. 108, 1265–1287 (2018).44 Part 2: The Behavioral Foundations of Economic Theory. J. Bus. 59, no. 4 (1986).45 R. H. Thaler, Misbehaving: The Making of Behavioural Economics (W. W. Norton & Company, 2016).46 G. Lowenstein, C. Camerer, M. Rabin, Eds., Advances in Behavioral Economics (Princeton University Press, 2004).47 N. Geiger, The rise of behavioral economics: A quantitative assessment. Soc. Sci. Hist. 41, 555–583 (2017).48 S. DellaVigna, “Structural behavioral economics” in Handbook of Behavioral Economics: Applications and Foundations 1, D. Bernheim, D. Laibson, S.DellaVigna, Eds. (Elsevier, 2018), vol. 1, pp. 613–723.49 D. Kahneman, A. Tversky, Prospect theory: An analysis of decisions under risk. Econometrica 47, 263–291 (1979).50 U. Gneezy, J. Potters, An experiment on risk taking and evaluation periods. Q. J. Econ. 112, 631–645 (1997).51 S. Benartzi, R. H. Thaler, Myopic loss aversion and the equity premium puzzle. Q. J. Econ. 110, 73–92 (1995).52 D. Kahneman, J. L. Knetsch, R. H. Thaler, Experimental tests of the endowment effect and the coase theorem. J. Polit. Econ. 98, 1325–1348 (1990).53 J. S. Lerner, D. A. Small, G. Loewenstein, Heart strings and purse strings: Carryover effects of emotions on economic decisions. Psychol. Sci. 15, 337–341 (2004).54 E. J. Johnson, G. Häubl, A. Keinan, Aspects of endowment: A query theory of value construction. J. Exp. Psychol. Learn. Mem. Cogn. 33, 461–474 (2007).55 S. Bhatia, R. Golman, Attention and reference dependence. Decision (Wash. D.C.) 6, 145–170 (2019).56 S. M. Tom, C. R. Fox, C. Trepel, R. A. Poldrack, The neural basis of loss aversion in decision-making under risk. Science 315, 515–518 (2007).57 J. Yacubian et al., Dissociable systems for gain- and loss-related value predictions and errors of prediction in the human brain. J. Neurosci. 26, 9530–9537 (2006).58 B. De Martino, C. F. Camerer, R. Adolphs, Amygdala damage eliminates monetary loss aversion. Proc. Natl. Acad. Sci. U.S.A. 107, 3788–3792 (2010).59 R. McDermott, Prospect theory in political science: Gains and losses from the first decade. Polit. Psychol. 25, 289–312 (2004).60 A. Alesina, F. Passarelli, Loss aversion in politics. Am. J. Polit. Sci. 63, 936–947 (2019).61 P. Tovar, The effects of loss aversion on trade policy: Theory and evidence. J. Int. Econ. 78, 154–167 (2009).62 O. D. Jones, “Why behavioral economics isn’t better, and how it could be” in Research Handbook on Behavioral Law and Economics, J. C. Teitelbaum, K. Zeiler,Eds. (Edward Elgar Publishing, 2018).63 V. Lakshminaryanan, M. K. Chen, L. R. Santos, Endowment effect in capuchin monkeys. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3837–3844 (2008).64 P. Kanngiesser, L. R. Santos, B. M. Hood, J. Call, The limits of endowment effects in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus).J. Comp. Psychol. 125, 436–445 (2011).65 C. L. Apicella, E. M. Azevedo, N. A. Christakis, J. H. Fowler, Evolutionary origins of the endowment effect: Evidence from hunter-gatherers. Am. Econ. Rev. 104,1793–1805 (2014).66 A. Baillon, H. Bleichrodt, V. Spinu, Searching for the reference point. https://aurelienbaillon.com/research/papers/pdf/reference_point.pdf. Accessed 12February 2020.67 E. J. Allen, P. M. Dechow, D. G. Pope, G. Wu, Reference-dependent preferences: Evidence from marathon runners. Manage. Sci. 63, 1657–1672 (2017).68 A. L. Brown, Z. E. Chua, C. F. Camerer, Learning and visceral temptation in dynamic saving experiments. Q. J. Econ. 124, 197–231 (2009).69 C. B. Jaeger, S. F. Brosnan, D. T. Levin, O. D. Jones, Predicting variation in endowment effect magnitudes. Evol. Hum. Behav. 41, 253–259 (2020).70 W. Samuelson, R. Zeckhauser, Status quo bias in decision making. J. Risk Uncertain. 1, 7–59 (1988).71 E. J. Johnson, D. Goldstein, Medicine. Do defaults save lives? Science 302, 1338–1339 (2003).72 R. H. Thaler, S. Benartzi, Save more tomorrow: Using behavioral economics to increase employee saving. J. Polit. Econ. 112, S164–S187 (2004).73 R. Chetty, J. N. Friedman, S. Leth-Petersen, T. H. Nielsen, T. Olsen, Active vs. Passive decisions and crowd-out in retirement savings accounts: Evidence fromDenmark. Q. J. Econ. 129, 1141–1219 (2014).74 C. Camerer, S. Issacharoff, G. Loewenstein, T. O’Donoghue, M. Rabin, Regulation for conservatives: Behavioral economics and the case for ‘asymmetricpaternalism’. Univ. Pa. Law Rev. 151, 1211 (2003).75 R. H. Thaler, C. R. Sunstein, Nudge: Improving Decisions about Health, Wealth, and Happiness (Penguin Books, 2009).76 D. M. Messick, C. G. McClintock, Motivational bases of choice in experimental games. J. Exp. Soc. Psychol. 4, 1–25 (1968).77 W. Güth, R. Schmittberger, B. Schwarze, An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ. 3, 367–388 (1982).78 A. Mas, Pay, reference points, and police performance. Q. J. Econ. 121, 783–821 (2006).79 G. F. Loewenstein, L. Thompson, M. H. Bazerman, Social utility and decision making in interpersonal contexts. J. Pers. Soc. Psychol. 57, 426–441 (1989).80 C. Camerer, E. Fehr, “Measuring social norms and preferences using experimental games: A guide for social scientists” in Foundations of Human Sociality, J.Henrich et al., Eds. (Oxford University Press, 2004), pp. 55–95.81 J. Berg, J. Dickhaut, K. McCabe, Trust, reciprocity, and social history. Games Econ. Behav. 10, 122–142 (1995).82 C. Camerer, K. Weigelt, Experimental tests of a sequential equilibrium reputation model. Econometrica 56, 1–36 (1988).83 E. Fehr, G. Kirchsteiger, A. Riedl, Does fairness prevent market clearing? An experimental investigation. Q. J. Econ. 108, 437–459 (1993).84 J. Henrich et al., “Economic man” in cross-cultural perspective: Behavioral experiments in 15 small-scale societies. Behav. Brain Sci. 28, 795–815, discussion815–855 (2005).85 E. Krupka, R. A. Weber, The focusing and informational effects of norms on pro-social behavior. J. Econ. Psychol. 30, 307–320 (2009).86 C. Camerer, R. H. Thaler, Anomalies: Ultimatums, dictators and manners. J. Econ. Perspect. 9, 209–219 (1995).87 E. Tricomi, A. Rangel, C. F. Camerer, J. P. O’Doherty, Neural evidence for inequality-averse social preferences. Nature 463, 1089–1091 (2010).88 I. Krajbich, R. Adolphs, D. Tranel, N. L. Denburg, C. F. Camerer, Economic games quantify diminished sense of guilt in patients with damage to the prefrontalcortex. J. Neurosci. 29, 2188–2192 (2009).89 T. Yamagishi, The provision of a sanctioning system as a public good. J. Pers. Soc. Psychol. 51, 110–116 (1986).90 B. Herrmann, C. Thöni, S. Gächter, Antisocial punishment across societies. Science 319, 1362–1367 (2008).91 S. DellaVigna, J. A. List, U. Malmendier, Testing for altruism and social pressure in charitable giving. Q. J. Econ. 127, 1–56 (2012).92 A. Cohn, M. A. Mare ́ chal, D. Tannenbaum, C. L. Zünd, Civic honesty around the globe. Science 365, 70–73 (2019).93 OECD, Behavioural insights. https://www.oecd.org/gov/regulatory-policy/behavioural-insights.htm. Accessed 15 January 2020.94 S. Bowles, S. Polan ́ıa-Reyes, Economic incentives and social preferences: Substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).95 N. R. Magliocca et al., Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proc. Natl. Acad. Sci. U.S.A. 116,7784–7792 (2019).96 C. Camerer, T. H. Ho, Experience-weighted attraction learning in normal form games. Econometrica 67, 827–874 (1999).97 P. Bordalo, N. Gennaioli, A. Shleifer, Salience theory of choice under risk. Q. J. Econ. 127, 1243–1285 (2012).98 M. Borgerhoff Mulder et al., Intergenerational wealth transmission and the dynamics of inequality in small-scale societies. Science 326, 682–688 (2009).99J.Henrich,M.Bauer,A.Cassar,J.Chytilova ́,B.G.Purzycki,Warincreasesreligiosity.Nat.Hum.Behav.3,129–135(2019).100 J. E. Blumenstock, M. Fafchamps, N. Eagle, “Risk and reciprocity over the mobile phone network: Evidence from Rwanda” (NET Institute Working Paper No. 11- 25, 2011).101 W.-Y. Ahn et al., Nonpolitical images evoke neural predictors of political ideology. Curr. Biol. 24, 2693–2699 (2014).102 D. J. Benjamin et al., The genetic architecture of economic and political preferences. Proc. Natl. Acad. Sci. U.S.A. 109, 8026–8031 (2012).103 G. Nave et al., Musical preferences predict personality: Evidence from active listening and facebook likes. Psychol. Sci. 29, 1145–1158 (2018).104 R. Philpot, L. S. Liebst, M. Levine, W. Bernasco, M. R. Lindegaard, Would I be helped? Cross-national CCTV footage shows that intervention is the norm in publicconflicts. Am. Psychol. 75, 66–75 (2019).105 B. Uzzi, S. Mukherjee, M. Stringer, B. Jones, Atypical combinations and scientific impact. Science 342, 468–472 (2013).106 V. Stodden et al., Enhancing reproducibility for computational methods. Science 354, 1240–1241 (2016).